Coverage for src/uqtils/mcmc.py: 82%

153 statements  

« prev     ^ index     » next       coverage.py v7.6.4, created at 2024-11-05 03:45 +0000

1"""Module for Markov-Chain Monte Carlo routines. 

2 

3Includes: 

4 

5- `normal_pdf` - vectorized Gaussian pdf evaluation 

6- `normal_sample` - vectorized Gaussian sampling 

7- `is_positive_definite` - whether a matrix is positive semi-definite 

8- `nearest_positive_definite` - finds the nearest PSD matrix 

9- `dram` - Delayed rejection adaptive Metropolis-Hastings MCMC 

10- `autocorrelation` - computes the autocorrelation of a set of samples 

11""" 

12import warnings 

13 

14import h5py 

15import numpy as np 

16import tqdm 

17 

18from .uq_types import Array 

19 

20__all__ = ['normal_pdf', 'normal_sample', 'is_positive_definite', 'nearest_positive_definite', 'dram', 

21 'autocorrelation'] 

22 

23 

24def normal_sample(mean: Array, cov: Array, size: tuple | int = (), sqrt=False) -> np.ndarray: 

25 """Generic batch sample multivariate normal distributions (pretty much however you want). 

26 

27 !!! Note 

28 The provided `mean` and `cov` should match along the last dimension, that is the dimension of the random 

29 variables to sample. If you want to sample a 1d Gaussian, then you can specify both the mean and covariance 

30 as scalars. However, as long as the mean and covariance are broadcastable in size, then you can use this 

31 function however you want, (i.e. sample many multivariate distributions at once, all with different means 

32 and covariances, etc., just get creative) 

33 

34 :param mean: `(..., dim)`, expected values, where `dim` is the random variable dimension 

35 :param cov: `(..., dim, dim)`, covariance matrices (or the sqrt(cov) if `sqrt=True`) 

36 :param size: shape of additional samples 

37 :param sqrt: whether `cov` was passed in already as the `sqrt(cov)` via cholesky decomposition 

38 :returns samples: `(*size, ..., dim)`, samples from multivariate distributions 

39 """ 

40 mean = np.atleast_1d(mean) 

41 cov = np.atleast_2d(cov) 

42 sqrt_cov = cov if sqrt else np.linalg.cholesky(cov) 

43 

44 if isinstance(size, int): 

45 size = (size, ) 

46 shape = size + np.broadcast_shapes(mean.shape, cov.shape[:-1]) 

47 x_normal = np.random.standard_normal((*shape, 1)).astype(mean.dtype) 

48 samples = np.squeeze(sqrt_cov @ x_normal, axis=-1) + mean 

49 return samples 

50 

51 

52def normal_pdf(x: Array, mean: Array, cov: Array, logpdf: bool = False) -> np.ndarray: 

53 """Compute the Gaussian pdf at each `x` location (pretty much however you want). 

54 

55 :param x: `(..., dim)`, the locations to evaluate the pdf at 

56 :param mean: `(..., dim)`, expected values, where dim is the random variable dimension 

57 :param cov: `(..., dim, dim)`, covariance matrices 

58 :param logpdf: whether to return the logpdf instead 

59 :returns: `(...,)` the pdf values at `x` 

60 """ 

61 x = np.atleast_1d(x) 

62 mean = np.atleast_1d(mean) 

63 cov = np.atleast_2d(cov) 

64 dim = cov.shape[-1] 

65 

66 preexp = 1 / ((2*np.pi)**(dim/2) * np.linalg.det(cov)**(1/2)) 

67 diff = x - mean 

68 diff_col = np.expand_dims(diff, axis=-1) # (..., dim, 1) 

69 diff_row = np.expand_dims(diff, axis=-2) # (..., 1, dim) 

70 inexp = np.squeeze(diff_row @ np.linalg.inv(cov) @ diff_col, axis=(-1, -2)) 

71 

72 pdf = np.log(preexp) - 0.5 * inexp if logpdf else preexp * np.exp(-0.5 * inexp) 

73 

74 return pdf 

75 

76 

77def is_positive_definite(A): 

78 """Returns true when input is positive-definite, via Cholesky.""" 

79 try: 

80 _ = np.linalg.cholesky(A) 

81 return True 

82 except np.linalg.LinAlgError: 

83 return False 

84 

85 

86def nearest_positive_definite(A): 

87 """Find the nearest positive-definite matrix to input. 

88 

89 A Python port of John D'Errico's `nearestSPD` MATLAB code [1], which credits [2]. 

90 [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd 

91 [2] N.J. Higham, "Computing a nearest symmetric positive semidefinite matrix", 1988 

92 """ 

93 B = (A + A.T) / 2 

94 _, s, V = np.linalg.svd(B) 

95 H = np.dot(V.T, np.dot(np.diag(s), V)) 

96 A2 = (B + H) / 2 

97 A3 = (A2 + A2.T) / 2 

98 if is_positive_definite(A3): 

99 return A3 

100 spacing = np.spacing(np.linalg.norm(A)) 

101 # The above is different from [1]. It appears that MATLAB's `chol` Cholesky 

102 # decomposition will accept matrixes with exactly 0-eigenvalue, whereas 

103 # Numpy's will not. So where [1] uses `eps(mineig)` (where `eps` is Matlab 

104 # for `np.spacing`), we use the above definition. CAVEAT: our `spacing` 

105 # will be much larger than [1]'s `eps(mineig)`, since `mineig` is usually on 

106 # the order of 1e-16, and `eps(1e-16)` is on the order of 1e-34, whereas 

107 # `spacing` will, for Gaussian random matrixes of small dimension, be on 

108 # othe order of 1e-16. In practice, both ways converge, as the unit test 

109 # below suggests. 

110 eye = np.eye(A.shape[0]) 

111 k = 1 

112 while not is_positive_definite(A3): 

113 mineig = np.min(np.real(np.linalg.eigvals(A3))) 

114 A3 += eye * (-mineig * k ** 2 + spacing) 

115 k += 1 

116 

117 return A3 

118 

119 

120def dram(logpdf, x0, niter, cov0=None, gamma=0.5, eps=1e-6, adapt_after=100, adapt_interval=10, 

121 delayed=True, progress=True, filename=None): 

122 """Delayed adaptive metropolis-hastings MCMC with a Gaussian proposal. 

123 

124 :param logpdf: log PDF function of target distribution 

125 :param x0: `(nwalkers, ndim)` initial parameter samples, ignored if samples exist in `filename` 

126 :param cov0: `(ndim, ndim)` the initial proposal covariance, defaults to identity or `cov` value in filename 

127 :param niter: number of iterations 

128 :param gamma: scale factor for the covariance matrix for delayed rejection step 

129 :param eps: small constant for making sure covariance is well-conditioned 

130 :param adapt_after: the number of iterations before covariance adaptation begins (ignored if <=0) 

131 :param adapt_interval: the number of iterations between each covariance adaptation (ignored if `adapt_after<=0`) 

132 :param delayed: whether to try to sample again after first rejection 

133 :param progress: whether to display progress of the sampler 

134 :param filename: if specified, an hdf5 file to save results to. If the file already has dram results, the new 

135 samples will be appended. Follows the same format as the `emcee` library 

136 :returns: `samples, log_pdf, acceptance` - `(niter, nwalkers, ndim)` samples of the target distribution, the logpdf 

137 values at these locations, and the cumulative number of accepted samples per walker 

138 """ 

139 # Override x0, cov0 if filename already has samples 

140 try: 

141 if filename is not None: 

142 with h5py.File(filename, 'a') as fd: 

143 group = fd.get('mcmc', None) 

144 if group is not None: 

145 x0 = group['chain'][-1, ...] 

146 if cov0 is None: 

147 cov0 = np.array(group['cov']) # only override if cov0 is not passed in 

148 niter += 1 

149 except Exception as e: 

150 warnings.warn(str(e)) 

151 

152 # Initialize 

153 x0 = np.atleast_2d(x0) 

154 nwalk, ndim = x0.shape 

155 cov0 = np.eye(ndim) if cov0 is None else cov0 

156 sd = (2.4**2/ndim) 

157 curr_cov = np.broadcast_to(cov0, (nwalk, ndim, ndim)).copy().astype(x0.dtype) 

158 curr_chol = np.linalg.cholesky(curr_cov) 

159 adapt_cov = curr_cov.copy() # adaptive covariance 

160 curr_mean = x0 

161 curr_loc_logpdf = logpdf(x0) 

162 samples = np.empty((niter, nwalk, ndim), dtype=x0.dtype) 

163 log_pdf = np.empty((niter, nwalk), dtype=x0.dtype) 

164 accepted = np.zeros((nwalk,), dtype=x0.dtype) 

165 samples[0, ...] = x0 

166 log_pdf[0, ...] = curr_loc_logpdf 

167 

168 def accept_first(curr_log, prop_log): 

169 with np.errstate(over='ignore'): 

170 # Overflow values go to -> infty, so they will always get accepted 

171 ret = np.minimum(1.0, np.exp(prop_log - curr_log)) 

172 return ret 

173 

174 # Main sample loop 

175 iterable = tqdm.tqdm(range(niter-1)) if progress else range(niter-1) 

176 # --8<-- [start:dram] 

177 for i in iterable: 

178 # Propose sample 

179 x1 = samples[i, ...] 

180 y1 = normal_sample(x1, curr_chol, sqrt=True) # (nwalkers, ndim) 

181 x1_log = curr_loc_logpdf 

182 y1_log = logpdf(y1) 

183 

184 # Compute first acceptance 

185 with np.errstate(invalid='ignore'): 

186 a1 = y1_log - x1_log # (nwalkers,) 

187 a1_idx = a1 > 0 

188 a1_idx |= np.log(np.random.rand(nwalk)) < a1 

189 samples[i + 1, a1_idx, :] = y1[a1_idx, :] 

190 samples[i + 1, ~a1_idx, :] = x1[~a1_idx, :] 

191 curr_loc_logpdf[a1_idx] = y1_log[a1_idx] 

192 accepted[a1_idx] += 1 

193 

194 # Second level proposal 

195 if delayed and np.any(~a1_idx): 

196 y2 = normal_sample(x1[~a1_idx, :], curr_chol[~a1_idx, ...] * np.sqrt(gamma), sqrt=True) 

197 y2_log = logpdf(y2) 

198 with ((np.errstate(divide='ignore', invalid='ignore'))): 

199 # If a(y2, y1)=1, then log(1-a(y2,y1)) -> -infty and a2 -> 0 

200 frac_1 = y2_log - x1_log[~a1_idx] 

201 frac_2 = (normal_pdf(y1[~a1_idx, :], y2, curr_cov[~a1_idx, ...], logpdf=True) - 

202 normal_pdf(y1[~a1_idx, :], x1[~a1_idx, :], curr_cov[~a1_idx, ...], logpdf=True)) 

203 frac_3 = (np.log(1 - accept_first(y2_log, y1_log[~a1_idx])) - 

204 np.log(1 - np.minimum(1.0, np.exp(a1[~a1_idx])))) 

205 a2 = frac_1 + frac_2 + frac_3 

206 a2_idx = a2 > 0 

207 a2_idx |= np.log(np.random.rand(a2.shape[0])) < a2 

208 

209 sample_a2_idx = np.where(~a1_idx)[0][a2_idx] # Indices that were False the 1st time, then true the 2nd 

210 samples[i + 1, sample_a2_idx, :] = y2[a2_idx, :] 

211 curr_loc_logpdf[sample_a2_idx] = y2_log[a2_idx] 

212 accepted[sample_a2_idx] += 1 

213 

214 log_pdf[i+1, ...] = curr_loc_logpdf 

215 

216 # Update the sample mean and cov every iteration 

217 if adapt_after > 0: 

218 k = i + 1 

219 last_mean = curr_mean.copy() 

220 curr_mean = (1/(k+1)) * samples[k, ...] + (k/(k+1))*last_mean 

221 mult = (np.eye(ndim) * eps + k * last_mean[..., np.newaxis] @ last_mean[..., np.newaxis, :] - 

222 (k + 1) * curr_mean[..., np.newaxis] @ curr_mean[..., np.newaxis, :] + 

223 samples[k, ..., np.newaxis] @ samples[k, ..., np.newaxis, :]) 

224 adapt_cov = ((k - 1) / k) * adapt_cov + (sd / k) * mult 

225 

226 if k > adapt_after and k % adapt_interval == 0: 

227 try: 

228 curr_chol[:] = np.linalg.cholesky(adapt_cov) 

229 curr_cov[:] = adapt_cov[:] 

230 except np.linalg.LinAlgError: 

231 warnings.warn(f"Non-PSD matrix at k={k}. Ignoring...") 

232 # --8<-- [end:dram] 

233 

234 try: 

235 if filename is not None: 

236 with h5py.File(filename, 'a') as fd: 

237 group = fd.get('mcmc', None) 

238 if group is not None: 

239 samples = np.concatenate((group['chain'], samples[1:, ...]), axis=0) 

240 log_pdf = np.concatenate((group['log_pdf'], log_pdf[1:, ...]), axis=0) 

241 accepted += group['accepted'] 

242 del group['chain'] 

243 del group['log_pdf'] 

244 del group['accepted'] 

245 del group['cov'] 

246 fd.create_dataset('mcmc/chain', data=samples) 

247 fd.create_dataset('mcmc/log_pdf', data=log_pdf) 

248 fd.create_dataset('mcmc/accepted', data=accepted) 

249 fd.create_dataset('mcmc/cov', data=curr_cov) 

250 except Exception as e: 

251 warnings.warn(str(e)) 

252 

253 return samples, log_pdf, accepted 

254 

255 

256def autocorrelation(samples, maxlag=100, step=1): 

257 """Compute the auto-correlation of a set of samples. 

258 

259 :param samples: `(niter, nwalk, ndim)` samples returned from `dram` or a similar MCMC routine 

260 :param maxlag: maximum distance to compute the correlation for 

261 :param step: step between distances from 0 to `maxlag` for which to compute the correlations 

262 :returns: lags, autos, tau, ess - the lag times, auto-correlations, integrated auto-correlation, 

263 and effective sample sizes 

264 """ 

265 niter, nwalk, ndim = samples.shape 

266 mean = np.mean(samples, axis=0) 

267 var = np.sum((samples - mean[np.newaxis, ...]) ** 2, axis=0) 

268 

269 lags = np.arange(0, maxlag, step) 

270 autos = np.zeros((len(lags), nwalk, ndim)) 

271 for zz, lag in enumerate(lags): 

272 # compute the covariance between all samples *lag apart* 

273 for ii in range(niter - lag): 

274 autos[zz, ...] += (samples[ii, ...] - mean) * (samples[ii + lag, ...] - mean) 

275 autos[zz, ...] /= var 

276 tau = 1 + 2 * np.sum(autos, axis=0) # Integrated auto-correlation 

277 ess = niter / tau # Effective sample size 

278 return lags, autos, tau, ess