

JOSHUA ECKELS

PhD Student in Aerospace Engineering

✉ eckelsjd@umich.edu

LinkedIn [linkedin.com/in/eckelsjd](https://www.linkedin.com/in/eckelsjd)

Github [eckelsjd.github.io](https://github.com/eckelsjd)

EXPERIENCE

Electric Propulsion & Machine Learning Intern

NASA Jet Propulsion Laboratory

⌚ 06/2025 – 08/2025 📍 Pasadena, CA, USA

- Designed and deployed a novel machine learning algorithm to accelerate physics solvers (~20% faster).
- Upgraded and automated a 2D CFD codebase for simulation of Hall thruster plasma physics.

Electric Propulsion Modeling & Simulation Intern

NASA Glenn Research Center

⌚ 06/2024 – 09/2024 📍 Cleveland, OH, USA

- Implemented and deployed efficient reduced particle-in-cell model of thruster plume and spacecraft erosion.
- Developed algorithm for detection of transient start-up arcing in vacuum chamber propulsion testing.

High-Voltage Firmware Validation Intern

Tesla

⌚ 06/2021 – 09/2021 📍 Palo Alto, CA, USA

- Developed Python automation framework to validate high-voltage battery firmware and system integration (>20 scripts, 200 hrs testing over 5 vehicle platforms).

Ultrasonics R&D Engineering Intern

Los Alamos National Laboratory

⌚ 06/2020 – 08/2020 📍 Los Alamos, NM, USA

- Constructed a novel and efficient (10x speedup) processing method for ultrasonic defect detection based on convolutional neural networks.
- Automated FEA, deep-learning, data analysis pipeline.

EDUCATION

PhD Aerospace Engineering

University of Michigan (4.0 GPA)

⌚ 08/2021 – 12/2026 📍 Ann Arbor, MI, USA

- Thesis: *Model error and uncertainty quantification in electric propulsion and plasma systems*

BS Mechanical Engineering

Rose-Hulman Inst Tech (4.0 GPA)

⌚ 08/2017 – 05/2021 📍 Terre Haute, IN, USA

TECHNICAL SKILLS

(years)

Python 7+

numpy, scipy, pytorch, etc.

Open-source 7+

linux, vcs, ci/cd, etc.

Scientific computing 6

hpc, mpi, slurm, etc.

Other languages 5

fortran, c, c++, js, java

Finite-element 4

cfd, ansys, plasmas, etc.

Fabrication 2

cnc, laser cutting, etc.

AWARDS

NSTGRO fellowship, 2023

NASA space technology award

R&D100 award, 2022

Los Alamos patented technology

Heminway prize, 2019

Academic award for top of class

RESEARCH INTERESTS

Electric propulsion, predictive models for design, test, and optimization of Hall thrusters

Plasma physics, accelerating kinetic particle-in-cell methods for low-temperature plasmas

Reduced-order modeling, data-driven methods for accelerating complex models

Uncertainty quantification, Bayesian methods for model validation, sensitivity analysis, and experimental design

SELECTED PUBLICATIONS

T. Marks, **J. Eckels** et al, Uncertainty quantification of a multi-component Hall thruster model at varying facility pressures.
2025 [Journal of Applied Physics](#)

J. Eckels et al, Hall thruster model improvement by multidisciplinary uncertainty quantification.
2024 [Journal of Electric Propulsion](#)

J. Eckels et al, Predicting local material thickness from steady-state ultrasonic wavefield measurements using a convolutional neural network.
2022 [Ultrasonics](#)

CONFERENCE PRESENTATIONS

Data-driven acceleration of Hall thruster simulations with a sliding-window method.
2025 [39th Int Electric Propulsion Conf](#)

Dynamic mode decomposition for particle-in-cell simulations of a Hall thruster and plume.
2024 [38th Int Electric Propulsion Conf](#)

Optimal experimental design to learn reduced-fidelity models for porous electrosprays.
2023 [AIAA SciTech Forum](#)

Simulation-based surrogate methodology of electric field for electrospray emitter geometry design and uncertainty quantification.
2022 [37th Int Electric Propulsion Conf](#)

Application of a U-net convolutional neural network to ultrasonic wavefield measurements for defect characterization.
2021 [39th Int Modal Analysis Conf](#)

OPEN-SOURCE CONTRIBUTIONS

Adaptive Multi-Index Stochastic Collocation
2025 [eckelsjd/amisc](#)

- Ground-up implementation of an efficient, multidisciplinary surrogate method using sparse grids.

Hall Thruster Predictive Modeling
2024 [JANUS-Institute/HallThrusterPEM](#)

- Ground-up implementation of a predictive engineering model for a Hall thruster.

Uncertainty Quantification Utilities

2024 [eckelsjd/uqtils](#)

- Ground-up implementation of useful tools for uncertainty quantification and Bayesian methods.

Template for Python Scientific Computing

2023 [eckelsjd/copier-numpy](#)

- Customizable template for Python scientific computing numpy-based projects.

1D Fluid Simulation of a Hall Thruster

2023 [UM-PEPL/Hallthruster.jl](#)

- Small code contributions and extensive stress testing and automation of built-in modules.