amisc.interpolator
Provides interpolator classes. Interpolators approximate the input → output mapping of a model given a set of training data. The training data consists of input-output pairs, and the interpolator can be refined with new training data.
Includes:
Interpolator
: Abstract class providing basic structure of an interpolatorLagrange
: Concrete implementation for tensor-product barycentric Lagrange interpolationLinear
: Concrete implementation for linear regression usingsklearn
InterpolatorState
: Interface for a dataclass that stores the internal state of an interpolatorLagrangeState
: The internal state for a barycentric Lagrange polynomial interpolatorLinearState
: The internal state for a linear interpolator (using sklearn)
Interpolator
Bases: Serializable
, ABC
Interface for an interpolator object that approximates a model. An interpolator should:
refine
- take an old state and new training data and produce a new "refined" state (e.g. new weights/biases)predict
- interpolate from the training data to a new set of points (i.e. approximate the underlying model)gradient
- compute the grdient/Jacobian at new points (if you want)hessian
- compute the 2nd derivative/Hessian at new points (if you want)
Currently, Lagrange
and Linear
interpolators are supported and can be constructed from a configuration dict
via Interpolator.from_dict()
.
from_dict(config)
classmethod
Create an Interpolator
object from a dict
config. Only method='lagrange'
is supported for now.
Source code in src/amisc/interpolator.py
gradient(x, state, training_data)
abstractmethod
Evaluate the gradient/Jacobian at points x
using the interpolator.
PARAMETER | DESCRIPTION |
---|---|
x |
the input Dataset
TYPE:
|
state |
the current state of the interpolator
TYPE:
|
training_data |
a tuple of |
RETURNS | DESCRIPTION |
---|---|
Dataset
|
a Dataset |
Source code in src/amisc/interpolator.py
hessian(x, state, training_data)
abstractmethod
Evaluate the Hessian at points x
using the interpolator.
PARAMETER | DESCRIPTION |
---|---|
x |
the input Dataset
TYPE:
|
state |
the current state of the interpolator
TYPE:
|
training_data |
a tuple of |
RETURNS | DESCRIPTION |
---|---|
Dataset
|
a Dataset |
Source code in src/amisc/interpolator.py
predict(x, state, training_data)
abstractmethod
Interpolate the output of the model at points x
using the given state and training data
PARAMETER | DESCRIPTION |
---|---|
x |
the input Dataset
TYPE:
|
state |
the current state of the interpolator
TYPE:
|
training_data |
a tuple of |
RETURNS | DESCRIPTION |
---|---|
Dataset
|
a Dataset |
Source code in src/amisc/interpolator.py
refine(beta, training_data, old_state, input_domains)
abstractmethod
Refine the interpolator state with new training data.
PARAMETER | DESCRIPTION |
---|---|
beta |
a multi-index specifying the fidelity "levels" of the new interpolator state (starts at (0,... 0))
TYPE:
|
training_data |
a tuple of |
old_state |
the previous state of the interpolator (None if initializing the first state)
TYPE:
|
input_domains |
a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
InterpolatorState
|
the new "refined" interpolator state |
Source code in src/amisc/interpolator.py
InterpolatorState
Bases: Serializable
, ABC
Interface for a dataclass that stores the internal state of an interpolator (e.g. weights and biases).
Lagrange(interval_capacity=4.0)
dataclass
Bases: Interpolator
, StringSerializable
Implementation of a tensor-product barycentric Lagrange polynomial interpolator. A LagrangeState
stores
the 1d interpolation grids and weights for each input dimension. Lagrange
computes the tensor-product
of 1d Lagrange polynomials to approximate a multi-variate function.
ATTRIBUTE | DESCRIPTION |
---|---|
interval_capacity |
tuning knob for Lagrange interpolation (see Berrut and Trefethen 2004)
TYPE:
|
gradient(x, state, training_data)
Evaluate the gradient/Jacobian at points x
using the interpolator.
Source code in src/amisc/interpolator.py
hessian(x, state, training_data)
Evaluate the Hessian at points x
using the interpolator.
Source code in src/amisc/interpolator.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
|
predict(x, state, training_data)
Predict the output of the model at points x
with barycentric Lagrange interpolation.
Source code in src/amisc/interpolator.py
refine(beta, training_data, old_state, input_domains)
Refine the interpolator state with new training data.
PARAMETER | DESCRIPTION |
---|---|
beta |
the refinement level indices for the interpolator (not used for
TYPE:
|
training_data |
a tuple of dictionaries containing the new training data ( |
old_state |
the old interpolator state to refine (None if initializing)
TYPE:
|
input_domains |
a
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
LagrangeState
|
the new interpolator state |
Source code in src/amisc/interpolator.py
LagrangeState(weights=dict(), x_grids=dict())
dataclass
Bases: InterpolatorState
, Base64Serializable
The internal state for a barycentric Lagrange polynomial interpolator.
ATTRIBUTE | DESCRIPTION |
---|---|
weights |
the 1d interpolation grid weights
TYPE:
|
x_grids |
the 1d interpolation grids
TYPE:
|
Linear(regressor='Ridge', scaler=None, regressor_opts=dict(), scaler_opts=dict(), polynomial_opts=lambda: {'degree': 1, 'include_bias': False}())
dataclass
Bases: Interpolator
, StringSerializable
Implementation of linear regression using sklearn
. The Linear
interpolator uses a pipeline of
PolynomialFeatures
and a linear model from sklearn.linear_model
to approximate the input-output mapping
with a linear combination of polynomial features. Defaults to Ridge regression (L2 regularization) with
polynomials of degree 1 (i.e. normal linear regression).
ATTRIBUTE | DESCRIPTION |
---|---|
regressor |
the scikit-learn linear model to use (e.g. 'Ridge', 'Lasso', 'ElasticNet', etc.).
TYPE:
|
scaler |
the scikit-learn preprocessing scaler to use (e.g. 'MinMaxScaler', 'StandardScaler', etc.). If None, no scaling is applied (default).
TYPE:
|
regressor_opts |
options to pass to the regressor constructor (see scikit-learn documentation).
TYPE:
|
scaler_opts |
options to pass to the scaler constructor
TYPE:
|
polynomial_opts |
options to pass to the
TYPE:
|
predict(x, state, training_data)
Predict the output of the model at points x
using the linear regressor provided in state
.
PARAMETER | DESCRIPTION |
---|---|
x |
the input Dataset
TYPE:
|
state |
the state containing the linear regressor to use
TYPE:
|
training_data |
not used for |
Source code in src/amisc/interpolator.py
refine(beta, training_data, old_state, input_domains)
Train a new linear regression model.
PARAMETER | DESCRIPTION |
---|---|
beta |
if not empty, then the first element is the number of degrees to add to the polynomial features. For example, if
TYPE:
|
training_data |
a tuple of dictionaries containing the new training data ( |
old_state |
the old linear state to refine (only used to get the order of input/output variables)
TYPE:
|
input_domains |
(not used for
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
InterpolatorState
|
the new linear state |
Source code in src/amisc/interpolator.py
LinearState(x_vars=list(), y_vars=list(), regressor=None)
dataclass
Bases: InterpolatorState
, Base64Serializable
The internal state for a linear interpolator (using sklearn).
ATTRIBUTE | DESCRIPTION |
---|---|
x_vars |
the input variables in order
TYPE:
|
y_vars |
the output variables in order
TYPE:
|
regressor |
the sklearn regressor object, a pipeline that consists of a
TYPE:
|